Large-scale CelebFaces Attributes (CelebA) Dataset

The CelebA dataset

CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations. The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face detection, and landmark (or facial part) localization.

Dataset Statistics

References

Samples

CELEBA Sample

Download dataset

http://pan.baidu.com/s/1eSNpdRG

Note

Dataset Usage

Development Environment

Pytorch GAN implemetation

1 Git clone https://github.com/znxlwm/pytorch-MNIST-CelebA-GAN-DCGAN.git

  1. If you want to train using cropped CelebA dataset, you have to change isCrop = False to isCrop = True.

3.pytorch_CelebA_DCGAN.py requires 64 x 64 size image, so you have to resize CelebA dataset (celebA_data_preprocess.py).

pytorch_CelebA_DCGAN.py added learning rate decay code.

Theano

The repository contains a command-line tool for recreating bit-exact replicas of the HDF5 datasets that we used in the paper. The tool also provides various utilities for operating on HDF5 files:

The repository contains a command-line tool for recreating bit-exact replicas of the HDF5 datasets that we used in the paper. The tool also provides various utilities for operating on HDF5 files:

usage: h5tool.py [-h]

inspect             Print information about HDF5 dataset.
compare             Compare two HDF5 datasets.
display             Display images in HDF5 dataset.
extract             Extract images from HDF5 dataset.
create_custom       Create HDF5 dataset for custom images.
create_mnist        Create HDF5 dataset for MNIST.
create_mnist_rgb    Create HDF5 dataset for MNIST-RGB.
create_cifar10      Create HDF5 dataset for CIFAR-10.
create_lsun         Create HDF5 dataset for single LSUN category.
create_celeba       Create HDF5 dataset for CelebA.
create_celeba_hq    Create HDF5 dataset for CelebA-HQ.

Type “h5tool.py -h” for more information. The create_* commands take the original dataset as input and produce the corresponding HDF5 file as output. Additionally, the create_celeba_hq command requires a set of data files representing deltas from the original CelebA dataset. The deltas can be downloaded from Google Drive ( https://drive.google.com/open?id=0B4qLcYyJmiz0TXY1NG02bzZVRGs )(27.6GB)

TensorFLow

Git clone https://github.com/carpedm20/DCGAN-tensorflow.git

$ python main.py –dataset celebA –input_height=108 –train –crop

To test with an existing model:


$ python main.py --dataset celebA --input_height=108 --crop

$ mkdir data/DATASET_NAME … add images to data/DATASET_NAME … $ python main.py –dataset celebA –train $ python main.py –dataset celebA