CALTECH101
CALTECH101
Caltech-101 contains a total of 9,146 images, split between 101 distinct object categories (faces, watches, ants, pianos, etc.) and a background category. This dataset contains 102 folders, the BACKGROUND_Google (the background category) can be removed, and users may use the left 101 categoies.
Dataset Statistics
- Color: RGB
- Sample size: Roughtly 300x200
- Dataset size: 1.2 GB
Overall, the dataset consists of pictures of objects belonging to 101 categories. About 40 to 800 images per category. Most categories have about 50 images. The size of each image is roughly 300x200 pixels. Almost all images are annotated with the following information: a bounding box of the object, and a carefully traced silhouette of the objects by a human subject.
The Number of Samples per Category for Caltech 101
TODO
Samples
Dataset Usage
Theano
ini_caltech101:
Getting the Code
To get a local copy of the code, clone it using git:
git clone https://github.com/marcuniq/ini_caltech101.git
cd ini_caltech101
Make sure you have the bleeding edge version of Theano, or run
pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git
Next, install the package. Use ‘develop’ instead of ‘install’ if you consider changing package code
python setup.py develop
Run train.sh (sets proper theano env flags), which downloads and untars the ‘img-gen-resized’ dataset, then starts training.
./train.sh
Keras
deeplearn-caltech101: Build on top of VGG19
The dataset is already contained in this project.
pip install -r requirements.txt
python2.7 caltech_convnet.py
Deeplearning4j
Caltech101Classifier: VGG16 pretrained model.
How to run the project:
-
IntelliJ IDE: This is a maven project. It’s developed in IntelliJ. The project can be loaded and run in IntelliJ. When run in IntelliJ, under “Run”->“Edit Configurations”, update following:
- VM options: -Xms8g -Xmx8g
- Program arguments: <data path ie: C:\Users\Yuyi\Desktop\bigdata2017Fall\skymind\data\train>
-
Command line: The Caltech101Classifier-1.0-SNAPSHOT-jar-with-dependencies.jar is under target folder. Run Caltech101Classifier-1.0-SNAPSHOT-jar-with-dependencies.jar: Go to the jar directory and run:
java -jar -Xms8g -Xmx8g Caltech101Classifier-1.0-SNAPSHOT-jar-with-dependencies.jar <data path>
Reference:
-
Images only: L. Fei-Fei, R. Fergus and P. Perona. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. IEEE. CVPR 2004, Workshop on Generative-Model Based Vision. 2004
-
Images and annotations: L. Fei-Fei, R. Fergus and P. Perona. One-Shot learning of object categories. IEEE Trans. Pattern Recognition and Machine Intelligence. In press.
Specific Categories:
- trilobite
- face
- pagoda
- tick
- inlineskate
- metronome
- accordion
- yinyang
- soccerball
- spotted cat
- nautilus
- grand-piano
- crayfish
- headphone
- hawksbill
- ferry
- cougar-face
- bass
- ketch
- lobster
- pyramid
- rooster
- laptop
- waterlilly
- wrench
- strawberry
- starfish
- ceilingfan
- seahorse
- stapler
- stop-sign
- zebra
- brontosaurus
- emu
- snoopy
- okapi
- schooner
- binocular
- motorbike
- hedgehog
- garfield
- airplane
- umbrella
- panda
- crocodile-head
- llama
- windsor-chair
- car-side
- pizza
- minaret
- dollarbill
- gerenuk
- sunflower
- rhino
- cougar-body
- crab
- ibis
- helicopter
- dalmatian
- scorpion
- revolver
- beaver
- saxophone
- kangaroo
- euphonium
- flamingo
- flamingo-head
- elephant
- cellphone
- gramophone
- bonsai
- lotus
- cannon
- wheel-chair
- dolphin
- stegosaurus
- brain
- menorah
- chandelier
- camera
- ant
- scissors
- butterfly
- wildcat
- crocodile
- barrel
- joshua-tree
- pigeon
- watch
- dragonfly
- mayfly
- cup
- ewer
- octopus
- platypus
- buddha
- chair
- anchor
- mandolin
- electric-g